Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi Min Jin, ${ }^{\text {a }}{ }^{*}$ Zu Guang Li, ${ }^{\text {b }}$ Mei Chao Li, ${ }^{\text {b }}$ Mao Lin Hu^{c} and Liang Shen ${ }^{\text {d }}$
${ }^{\text {a }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\mathbf{b}}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\text {c }}$ Department of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang 325003, People's Republic of China, and
${ }^{\text {d }}$ Department of Chemistry, Hangzhou Teacher College, Hangzhou 310012, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.077$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Dimethylpyridinium nitrate

In the crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{NO}_{3}{ }^{-}$, the cations and anions are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a supramolecular structure.

Comment

Crystal structures of a few 2,6-dimethylpyridinium complexes have been reported previously (Jin et al., 2000; Pan et al., 2001). We report here the structure of the title salt, (I), obtained from 2,6-dimethylpyridine and nitric acid.

(I)

The asymmetric unit of (I) consists of one 2,6-dimethylpyridinium cation and one nitrate anion linked by a $\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 3$ hydrogen bond and a $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$ interaction (Fig. 1 and Table 2). In the crystal structure, the cations and anions are linked by a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions to form a network. Part of the network around a nitrate anion is shown in Fig. 2. In the network, the nitrate anion is arranged nearly parallel to two symmetry-related cations [dihedral angle $\left.12.33(6)^{\circ}\right]$, but it is inclined to the other cation ($\mathrm{N} 1 / \mathrm{C} 1-$ C7) with a dihedral angle of $60.42(3)^{\circ}$. The network is further stabilized by $\pi-\pi$-stacking interactions involving pyridinium rings at (x, y, z) and $\left(\frac{1}{2}-x, \frac{3}{2}-y,-z\right)$, respectively, with a centroid-centroid separation of 3.558 (1) Å.

The bond lengths in (I) have normal values. In comparison with pyridine, the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle in the pyridinium ring is usually widened. For example, the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle in 2,6-dimethylpyridine (Bond et al., 2001) is $119.0(3)^{\circ}$, and 120° in its 1:1 complex with urea (Lee \& Wallwork, 1965). In the $1: 1$ complex of 4-methylpyridine and pentachlorophenol, which has been crystallized as a salt at 80 K and a neutral adduct at 295 K , the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles are 119.9 (2) and $118.0(4)^{\circ}$, respectively (Malarski et al., 1987, 1996). In the salts of 2,6dimethylpyridinium hydrogen phthalate and 2,6-dimethylpyridinium fumarate (Jin et al., 2000; Pan et al., 2001), this angle is widened to 123.83 (2) and 123.92 (17) ${ }^{\circ}$, respectively. A similar feature is also observed in the title salt, with a $\mathrm{C} 1-$ N 1 - C5 angle of $124.90(13)^{\circ}$.

Experimental

2,6-Dimethylpyridine and aqueous nitric acid, in an equimolar ratio, were mixed together. Crystals of (I) formed in the resulting solution by slow evaporation for a month at 293 K .

Figure 1

The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{NO}_{3}{ }^{-}$
$M_{r}=170.17$
Monoclinic, $C 2 / c$
$a=15.918(3) \AA$
$b=7.560(1) \AA$
$c=15.924(3) \AA$
$\beta=114.26(1)^{\circ}$
$V=1747.1(5) \AA^{3}$
$Z=8$
$D_{x}=1.294 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 782
\quad reflections
$\theta=2.8-19.8^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Bruker SMART Apex CCD area-
\quad detector diffractometer
φ and ω scans
5170 measured reflections
2069 independent reflections
1091 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.077$
$S=0.86$
2069 reflections
115 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.032 \\
& \theta_{\max }=28.1^{\circ} \\
& h=-13 \rightarrow 20 \\
& k=-9 \rightarrow 9 \\
& l=-20 \rightarrow 20
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0314 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.13 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.07 \mathrm{e}^{-3}$
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{C} 1-\mathrm{N} 1$	$1.3313(16)$	$\mathrm{C} 5-\mathrm{N} 1$	$1.3271(16)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3581(17)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.4747(17)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.4817(18)$	$\mathrm{N} 2-\mathrm{O} 2$	$1.2107(13)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3534(19)$	$\mathrm{N} 2-\mathrm{O} 1$	$1.2176(12)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3506(18)$	$\mathrm{N} 2-\mathrm{O} 3$	$1.2342(13)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.3661(17)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.63(14)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 7$	$118.23(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$117.52(12)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$124.53(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$124.84(13)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$124.90(13)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$117.24(14)$		

Figure 2
A view of the hydrogen bonding network around a nitrate anion. The symmetry code for atoms $\mathrm{C} 2^{*}$ and Cb^{*} is $\left(\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z\right)$ and that for $\mathrm{C} 4^{\#}$ is $\left(x, 2-y, \frac{1}{2}+z\right)$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	$0.827(12)$	$1.912(13)$	$2.7364(17)$	$175.5(11)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots 1^{\mathrm{i}}$	0.93	2.51	$3.3567(19)$	152
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{1 i}$	0.93	2.44	$3.3438(18)$	165
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.54	$3.3463(18)$	145
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.57	$3.4700(17)$	156
$\mathrm{C} 7-\mathrm{H} 7 C \cdots \mathrm{O} 2$	0.96	2.58	$3.3723(16)$	140

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $x, 2-y, z-\frac{1}{2}$.
Atom H1 was located in a difference Fourier map and refined isotropically; all other H atoms were placed in calculated positions and allowed to ride on their parent atoms. A rotating group model was used for the methyl groups.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bond, A. D., Davies, J. E. \& Kirby, A. J. (2001). Acta Cryst. E57, o1242-o1244. Bruker (2000). SAINT-Plus (Version 6.20), SMART (Version 5.625) and SHELXTL (Version 6.10). Bruker AXS Inc. Madison, Wisconsin, USA.
Jin, Z. M., Pan, Y. J., Xu, D. J. \& Xu, Y. Z. (2000). J. Chem. Crystallogr. 30, 119122.

Lee, J. D. \& Wallwork, S. C. (1965). Acta Cryst. 19, 311-313.
Malarski, Z., Majerz, I. \& Lis, T. (1987). J. Mol. Struct. 158, 369-377.
Malarski, Z., Majerz, I. \& Lis, T. (1996). J. Mol. Struct. 380, 249-256.
Pan, Y. J., Jin, Z. M., Sun, C. R. \& Jiang, C. W. (2001). Chem. Lett. 10, 10081009.

